Integration of In Situ and Ex Situ Data Management for Biodiversity Conservation Via the ISIS Zoological Information Management System

A Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at George Mason University

Karin R Schwartz, Ph.D.
George Mason University, 2014

Abstract

For conservation action to mitigate biodiversity loss there is an increasing need for a “one plan approach” to develop multi-disciplinary conservation strategies that include the integration of in situ (in the wild) and ex situ (under human care in managed zoological facilities) management processes. This integration necessitates collaboration at all levels of conservation action including planning, implementation, monitoring and finally assessment to drive adaptive management processes. Each component of conservation action is fully dependent on the availability and accuracy of data in order to guide the formation of action plans and carry out management processes. The Zoological Information Management System (ZIMS), managed by the International Species Information System (ISIS), is a centralized Web-based system that pools data on global ex situ animal populations including basic information on life history, physiology, behavior, and health to facilitate animal husbandry and breeding management programs. ZIMS offers a new opportunity to link data management processes for animals that spend a part of their lives under human care and part in their natural environment and potentially for use monitored wild populations.

This project encompassed a global collaboration of conservationists including zoo and wildlife professionals, academics, government authorities, IUCN Specialist Groups, and regional and global zoo associations. The dissertation had three main goals: 1) to identify data needed to manage and assess threatened species conservation programs; 2) to identify the data management tools currently in use by both in situ and ex situ partners for representative species recovery programs; and 3) to develop the framework to expand the use of ZIMS by aligning the in situ and ex situ data needs with ZIMS functionality.

First, case studies of conservation translocations for representative invertebrate, fish, amphibian, reptile, bird, and mammal species, published in three volumes of the Reintroduction Specialist Group’s Global Re-introduction Perspectives (Soorae 2008, 2010, 2011) were reviewed to identify parameters used in management and evaluation of success of the projects. Results showed that for all animal groups, important management and assessment parameters included basic data components on life history attributes, genetic diversity, habitat and resources, health assessments, husbandry and release methodologies, and long-term monitoring. Overriding
themes included the lack of evidence-based information on life history, biology and ecology of the species and the need for scientific research for each step of the conservation translocation programs.

Second, data collection and management tools were identified for five categories of threatened species programs, each in some way impacted by the integration of in situ and ex situ research or management (see Appendix I). Ex situ species coordinators and registrars were consulted to identify data management practices for animals in zoological institutions and field researchers’ data collection methods were investigated through direct observation or electronic communication (see Appendix II). Overall data management processes included the use of ISIS programs for ex situ programs and a combination of database programs (Access, Excel), Word documents, paper forms, and media (photos, videos, diagnostic images) for both ex situ and in situ programs such that compiling data for analysis was inefficient. Communication between ex situ and in situ partners required duplicate efforts in reporting resulting in lag times that compromised effective conservation action.

Third, data requirements and data management tools for each program were aligned with ZIMS functionality to illustrate how this information system could integrate in situ and ex situ data management processes. Acknowledging that ZIMS has current functionality to cover many of the collective data management processes, limitations for comprehensive in situ data management were identified and recommendations were made for further development. Use of ZIMS can facilitate coordination of data management processes between conservation partners, thus improving the efficacy of biodiversity conservation programs.

Appendix I

The five categories with the species surveyed are:

A. Endangered species whose wild population became dangerously low and captive breeding or head-start program was implemented for purposes of release for reintroduction.

 American burying beetle (*Nicrophorus americanus*)
 Takahē (*Porphyrio hochstetteri*)
 Western pond turtle (*Actinemys marmorata*)

B. Endangered species brought into captivity due to threat of extinction in the wild. At one time, listed as IUCN Extinct in the Wild. Reintroduction program well developed through captive breeding or head-starting with managed release and established monitoring program for assessment.

 Kākāpo (*Strigops habroptila*)
 Kihansi spray toad (*Nectophrynoides asperginis*)
 Red wolf (*Canis rufus*)
C. Endangered species that does not currently have a reintroduction program but future conservation efforts include such a program. Current ex situ programs contribute data to PHVA for the species and integrated plan is developed for overall conservation.

Lowland tapir (*Tapirus terrestris*)

D. Endangered species that has a rescue/rehabilitation/release program but no current reintroduction program of captive animals to the wild.

Cheetah (*Acinonyx jubatus*)

E. Endangered species with a research program for the wild populations but no current reintroductions from the captive population (if present).

Giant armadillo (*Priodontes maximus*)
Armenian viper (*Montivipera raddei*)

Appendix II

Acknowledgements
I extend my appreciation to Josh Courteau and Elisabeth Hunt at the International Species Information System (ISIS) who gave me free access to explore the *Zoological Information Management System* (ZIMS). To Glenous Favata, my Co-administrator of the Institutional Records-Keeping (IRK) Course and the IRK instructors Adrienne Miller, Lynn McDuffie, Mike Souza, Elisabeth Hunt, and Josh Courteau I extend my gratitude for keeping me up to date on the comprehensive functionality of ZIMS. Special appreciation goes to Nate Flesness, Elisabeth Hunt, Adrienne Miller, Josh Courteau and Dr. J. Andrew Teare who contributed valuable information and acted as reviewers to ensure the accuracy of information on ISIS and ZIMS.

I extend special gratitude to the following contributors for the investigated conservation programs. Everyone openly shared the structures of their data management systems and were eager to explore opportunities to improve efficiency and standardization between ex situ and in situ partners.

American burying beetle
Bob Merz, Director, Center for American Burying Beetle Conservation, WildCare Institute, St. Louis Zoo

Takahē and Kākāpo
Dr. Andrew Digby, Science Advisor Kākāpo/Takahē, Department of Conservation (DOC), New Zealand
Glen Greaves, Senior Ranger, Takahē Team, DOC
Dr. Richard Jakob-Hoff, Manager, Conservation Science and Research, Auckland Zoo
Caroline Lees, Co-convener, CBSG Australasia
Western pond turtle
Dr. Jennifer Pramuck, Curator, Woodland Park Zoo
Dr. Fred Koontz, Vice President of Field Conservation, Woodland Park Zoo
Bill McDowell, Zookeeper, Woodland Park Zoo
Krista Adelhardt, Registrar, Woodland Park Zoo
Dr. David Shepherdson, Department of Conservation Manager, Oregon Zoo
Kate and Frank Slavens, Conservation biologists
Jeffrey Skriletz, Biologist, Washington Department of Fish and Wildlife
Dr. Phil Miller, Senior Program Officer, Conservation Breeding Specialist Group

Kihansi spray toad
R. Andrew Odum, Assistant Director of Animal Programs, Toledo Zoo
Glenous Favata, Registrar, Toledo Zoo
Dr. Christopher Hanley, Staff Veterinarian, St. Louis Zoo
Emanuel Nkombe, Kihansi Spray Toad Keeper, Ministry of Natural Resources Wildlife Division, United Republic of Tanzania

Red wolf
Dr. David Rabon, Jr., Coordinator, Red Wolf Recovery Program, USFWS
Dr. Rebecca Bartel, Assistant Coordinator, Red Wolf Recovery Program, USFWS
Art Beyer, Biologist, Red Wolf Field Coordinator, Red Wolf SSP®, USFWS
Marla Waddell, Registrar, Point Defiance Zoo & Aquarium, Tacoma, WA
Will Waddell, Red Wolf SSP® Coordinator, Point Defiance Zoo & Aquarium, WA
Jessica Bennett, Director of Programs, Trevor Zoo, Millbrook, NY
Dr. Alan Tousignant, Director, Trevor Zoo, Millbrook, NY
Carmen Murach, Curator of Programs, Northeastern Wisconsin Zoo, Green Bay, WI
Wendy Spencer, Curator, Wolf Haven International, Tenino, WA

Lowland tapir
Dr. Patricia Medici, Research Coordinator, Lowland Tapir Conservation Initiative (LTCI), Chair of the IUCN/SSC Tapir Specialist Group (TSG)
Dr. Paulo Rogerio Mangini, Field Veterinarian, Triade
José Maria de Aragão, LTCI Field Assistant

Cheetah
Dr. Laurie Marker, Executive Director, Cheetah Conservation Fund
Dr. Anne Schmidt-Küntzel, Research Geneticist and Assistant Director for Animal Health and Research, Cheetah Conservation Fund
Paige Seitz, Livestock Guarding Dog Program, Cheetah Conservation Fund
Kate Vanelli, Assistant International Cheetah Studbook Keeper

Armenian viper
Dr. Jeff Etting, Curator of Herpetology & Aquatics, St. Louis Zoo
Director, Center for Conservation in Western Asia, Wildcare Institute
I would also like to thank the following contributors for programs that were investigated but not documented in this dissertation. These programs will be included in going forward to build the framework for a linked data management system using ZIMS.

Giant armadillo
Dr. Arnaud Desbiez, Conservation Manager, Royal Zoological Society of Scotland
Dr. Danilo Kluyber, Field Veterinarian, Research Associate, Royal Zoological Society of Scotland
Gabriel Massocato, Biologist, Institute for Ecological Research

Black-footed ferret
Paul Marinari, Senior Curator, Smithsonian Conservation Biology Institute
Robyn Bortner, Fish and Wildlife Biologist, National Black-footed Ferret Conservation Center (NBFFCC), U.S. Fish & Wildlife Service (US FWS)
Tyler Tretten, Animal Care, NBFFCC, US FWS
Laura Morse, Registrar, Smithsonian National Zoological Park

Florida manatee
Jim Valade, Recovery Lead, Florida Manatee Recovery Program, US FWS
Debbie Halin, Registrar, Lowry Park Zoo
Virginia Edmonds, Animal Care Manager, Lowry Park Zoo

Golden lion tamarin
Dr. Jennifer Mickelberg, Curator of Primates, Zoo Atlanta

Panamanian golden toad
Dr. Brian Gratwicke, Lead Amphibian Conservation Biologist, Smithsonian Conservation Biology Institute

Wyoming toad
Val Hornyak, Herpetology Lead Keeper, Toledo Zoo
R. Andrew Odum, Assistant Director of Animal Programs, Toledo Zoo

References